Up/Down-Counter Board Model ZIB 1155

General

The counter card type ZIB 1155 was designed to interface wit PC's internal ISA-Bus through any available expansion slot.
The board contains 4 independent 32-bit-binarycounter, 16 digital inputs and 16 digital outputs..

Counters

The counters are used for measurement of length by the usage of incremental encoder with two channel outputs or for events counting.
Several different modes are programmable. The available modes are listed below.

counter	modes
up/down	4-fold-mode
event	2-fold-mode
	1-fold-mode
	up-counter
	down-counter

The BASE address is switch selectable and can be located anywhere up to 3C0h. This allows installing multiple boards in the same host at the same time.

Digital I/O's

The digital inputs use plug-in resistance networks. By this way any desired input voltage level can be realized. The digital outputs are from open collector type. Currents up to 100 mA and voltages up to 30 V can be applied.

Software

A disk is included with programming examples for Basic, Turbo Pascal, C, Visual Basic, 16 Bit DLL for Windows 3.x, and 32 Bit DLL for Windows 95.

Technical Specifications

Counter $: 4 \times 32$ Bit-Counter
Input Voltage Level
Optional
Input Frequency
Digital Inputs
Input Voltage Level
Optional
Digital Outputs
Current
Voltage
Power Supply
Connector
EMV
Highlights
-4 Channel 32-Bit-Up/Down-Counter

- Event Counting
-Soft- Or Hardware-Reset
-Common Latch Input
-16 Digital Input And Output Channels
- Meets EMV-Specifications
$5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$ Customer Defined max. 300 kHz 16 Channels
$5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$
Customer Defined
16 Channels
: max. 100 mA
max. 30 V
+5 V , max. 0,5 A
DB50-male
EMV-conform with 89/336/EWG
$0-50^{\circ} \mathrm{C}$
: -25 to $+85{ }^{\circ} \mathrm{C}$
: $160 \times 100 \mathrm{~mm}$:

Operating Temperature
Storage Temperature
Dimensions

Ordering Information

ZIB1155/X/XX/XX
Digital Input Level:
$05=5 \mathrm{~V}$
$12=12 \mathrm{~V}$
$24=24 \mathrm{~V}$
Counter Input Level:
$05=5 \mathrm{~V}$
$12=12 \mathrm{~V}$
$24=24 \mathrm{~V}$
Number Of Counters:
$1=1$ Counter
2 =2 Counter
$3=3$ Counter
4 =4 Counter

